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a b s t r a c t

The effect of geometry on thermoelastic damping in micro-beam resonators is evaluated using an
eigenvalue formulation and a customized finite element method. The vented clamped–clamped (CC) and
clamped-free (CF) beams with square-shaped vents along their centerlines, are both analyzed by the
finite element method. The quality factor and the resonant frequency are obtained as functions of various
geometrical parameters including the location, number and size of the vents. The numerical results
reveal that the addition of vent sections in the clamped end region can significantly increase the quality
factor. The maximum improved quality factor as high as 3801 and 2257 times those of the CC and CF solid
beams are realized. The methodology presented in this work provides a useful tool in design
optimization of micro beam resonators against thermoelastic damping.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Microelectromechanical systems (MEMS) have been widely
used as resonators for sensing [1–3] and electrical filtering [4–6]
applications. One common type of resonators is a simple beam
that can oscillate at its resonant frequency by electric actuation
from an AC voltage source between the beam and the electrodes
[7–9]. For design and fabrication of such a beam, one of the most
important aspects is to achieve a high quality factor, as it is
essential that the resonator vibrates consistently at the desired
frequency and requires as little energy as possible to maintain its
vibration. A higher quality factor is also preferred for signal
selection.

There are many different mechanisms for energy dissipation
inside micro-beam resonators, including thermoelastic damping,
fluid damping [10–13], support loss [14] and surface loss [15–17].
Among these energy loss mechanisms, thermoelastic damping has
been an active research area for a long term since it imposes an
upper limit on the attainable quality factor. It arises from thermal
currents generated due to contraction/expansion of elastic struc-
tures. The bending of micro-beams causes dilations of opposite
signs on the upper and lower halves. Consequently, there is a
transverse temperature gradient of finite thermal expansion in the
structure, generating local heat currents. The mechanism was first
explained by Zener [18,19] who named it internal friction for the
ll rights reserved.
case of vibrating reeds. Zener also derived an approximate
expression for thermoelastic damping, by keeping the first trans-
verse thermal mode and neglecting the rest modes. Following this
discovery, other scholars refined the theory via a number of
different approaches. Lifshitz [20], for example, provided an exact
solution to the linear thermoelastic equations in flexural-mode
beam resonators. These analytical methods were later extended
for other geometric structures. Wong [21,22] and Kim [23]
presented mathematical expressions for thermoelastic damping
in a ring gyroscope, based on Zener’s and Lifshitz’s method for
flexural-mode rectangular beams, respectively. In a similar way,
Sun [24] investigated the out-of-plane damping modes of circular
plate resonators. Further, Hao [25] derived an exact solution for
circular plates based on the thermal-energy approach, in which
the generation of thermal energy per cycle of vibrationwas used in
search of the solution of the quality factor. In addition to the
analytical methods, the finite element formulation [26,27] was
found a more efficient tool for those systems with complex
geometrical shapes, mixed boundary conditions, or anisotropic
material properties. Yi’s group improved this method for beams,
plates, axisymmetric rings [28] and derived a generalized eigen-
value scheme for the problems based on the Fourier reduction [29]
in both two-dimensional and three-dimensional structures, even
in the presence of fluid viscous damping [13]. In addition, the
commercial software COMSOL© can be used for the problem, but
the solution procedure requires the customer to provide the
undamped frequency f0 at the beginning, and the numerical
accuracy is dependent on the manual scaling settings [30].
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However, limited research was performed on the practical
methods to improve the quality factor by minimizing the damping
loss. Candler et al.[31], for example, experimentally applied a
specific addition to the geometry—slots cut in beams. The slots
acted to disrupt heat flow across the beam, therefore altering the
process of thermoelastic dissipation. This method enables tuning
of the quality factor by structure design without the need to scale
its size, thus allowing for enhanced design optimization. Inspired
by this work, the current paper is seeking a predictive modeling
tool that can be used to quantitatively evaluate the effect of beam
geometry on the mitigation of thermoelastic damping. The meth-
odology developed in this work is based on the eigenvalue finite
element analysis of clamped–clamped (CC) and clamped-free (CF)
beams with vents (slot cuts) along their centerlines. We aim for
finding the optimal design of the geometry for maximizing the
quality factor.
Fig. 2. A convergence study of the quality factor and resonant frequency.
2. Methods

The schematic of a capacitive micro beam resonator [7] is
shown in Fig. 1a along with the definitions of the relevant
parameters. The driving force in the device is the Coulomb force
of the capacity formed by the beam and the electrode. The micro
beam is usually considered as a two-dimensional Euler–Bernoulli
beam with a clamped–clamped boundary condition. The thermo-
elastic temperature mode of such a beam in its fundamental
resonant frequency is shown in Fig. 1b. The heat flow induced by
thermoelastic expansion and contraction is directed from the hot
region to the cold region.
Fig. 1. (a) Schematic view of a clamped–clamped capacitive micro beam resonator. (b) Te
vibration. The heat flow caused by the temperate gradient contributes to thermoelastic
2.1. Analytical approach for thermoelastic damping

For a two-dimensional Euler–Bernoulli beam, the first govern-
ing equation [20] is formulated by adding the thermoelastic strain
term to the equation of motion:

ρA
∂2Y
∂t2

þ ∂2

∂x2
EI

∂2Y
∂x2

þ EαIT

� �
¼ 0 ð1Þ
mperature contour plot of the clamped–clamped MEMS beam resonator in flexural
damping.
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where x is the longitudinal position; Y is the out-of-plane
displacement in the beam width as shown in Figs. 1 and 2; E, ρ
and α are the elastic modulus, the density and the thermal
expansion coefficient of the solid, respectively; A is the cross
sectional area of the beam; I is the moment of inertia, and IT
defines the bending moment induced by the thermal deformation
where

IT ¼
Z
A
yTdydz ð2Þ

Note that the total temperature Tt is the sum of two parts
Tt¼T0+T, where T0 is the environment temperature and T is the
fluctuating temperature caused by vibration. When the term EαIT
is absent, Eq. (1) would degenerate to a free vibration without
thermoelastic damping.

Similarly, the second coupling equation can be obtained by
considering the heat generation caused by the alternating com-
pression and stretching of the material. For the corresponding heat
transfer problem, by neglecting the component of heat flux in the
x-direction, the heat diffusion equation can be written in the
following form:

∂T
∂t

¼ k
∂2T
∂y2

−
EαT0

ð1−2νÞcv
∂ε
∂t

ð3Þ

where k, ν and cv are the thermal diffusivity, Poisson’s radio of the
solid and the heat capacity of the solid, respectively; ε is the elastic
strain. The last term in Eq. (3) is the heat generation due to
thermal expansion/contraction.

Lifshitz’s method [20] is a complex-frequency approach in
which a harmonic motion is assumed in the perturbation form
as follows:

Yðx; tÞ ¼ Y0ðxÞeiωt and Tðx; tÞ ¼ T0ðxÞeiωt ð4Þ
where Y0 and T0 are the alternating amplitude of out plane
displacement and the thermoelastic temperature, respectively.
The temperature profile can be computed along the cross section
of the beam by substituting Eq. (4) into Eq. (1). The obtained
temperature profile can then be used to derive the mode of
vibration that is defined as a complex value:

ω¼ ReðωÞ þ iImðωÞ with i¼
ffiffiffiffiffiffi
−1

p
ð5Þ

where the real part Re(ω) gives the new eigen-frequency of the
beam in the present of thermoelastic damping while the imagin-
ary part Im(ω) indicates the attenuation in the vibration. The
amount of thermoelastic damping, expressed in terms of the
quality factor Q−1, will then be determined by

Q−1 ¼ 2
��� ImðωÞ
ReðωÞ

��� ð6Þ

The final closed form solution [20] for thermoelastic damping is

Q−1 ¼ Eα2T0

cv

6
ξ2

−
6
ξ2

sinh ξþ sin ξ

cosh ξþ cos ξ

� �
ð7Þ

where

ξ¼w
ffiffiffiffiffiffi
ω0

2k

r
ð8Þ

The first undamped natural frequency ω0 of the beam is

ω0 ¼ β

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ew2

12ρL4

s
ð9Þ

where w is the width of the beam; L is the beam length and β is a
coefficient determined by the boundary constraints. The value of β
is 22.37 and 3.52 for clamped–clamped and clamped-free condi-
tions, respectively [32].
2.2. Finite element formulation of thermoelastic damping

As stated in the previous section, a micro-beam can be
simplified as either a two-dimensional plane strain or plane stress
problem [33] to save the computational effort. Therefore, the
following derivations are based on the two-dimensional problems
only. The three-dimensional problems can be formulated in a
similar way. The equation of motion written in the continuous
form is

ρ
∂2u
∂t2

−∇ðCu−DTÞ ¼ ρ €u−∇ðCu−DTÞ ¼ 0 ð10Þ

C ¼ E
ð1þ νÞð1−2υÞ

1−ν ν 0
ν 1−ν 0
0 0 1=2−ν

2
64

3
75 for plane strain when Tb4Wb

ð11aÞ

C ¼ E
1−υ2

1 ν 0
ν 1 0
0 0 1−vð Þ=2

2
64

3
75 for plane stress when TboWb

ð11bÞ

where u is the displacement vector; T is the alternating tempera-
ture; C is the stiffness matrix; D is the thermal expansion
coefficient matrix; Tb and Wb are already explained in Fig. 1. The
Galerkin finite element method is then applied to the single
elemental domain to approximate the displacement field:

u¼ ½N� ux uy

h iT
¼ ½N�fueg ð12Þ

€u¼ N½ � €ux €uy

h iT
¼ ½N� €ue

� � ð13Þ

T ¼ N½ � Tx Ty

h iT
¼ N½ � Tef g ð14Þ

ε¼ εx εy εxy
h i

¼ ∂½ �u¼ ð½∂�½N�Þfueg ¼ ½B�fueg ð15Þ

where N is the shape function, ε is the elastic strain tensor, the
subscript e represents the elemental value. The Galerkin residual
equation [34] in the entire physical domain is

∬ ½N�T ½ρ €u−∇ðCu−DTÞ�dxdy¼ 0 ð16Þ

Integration of the second and the third terms in Eq. (16) by
parts yields

∬ ½N�T ∂
∂x

ðCεÞdxdy¼∬ ½N�T dðCεÞ� 	
dy¼−∬ ½N; x�TCεdy

þ
Z

½N�TCεdy ð17Þ

∬ N½ �T ∂
∂y

ðCεÞdxdy¼∬ N½ �T dðCεÞ� 	
dx¼−∬ N; y

� 	TCεdx
þ

Z
N½ �TCεdx ð18Þ

∬ N½ �T ∂
∂x

ðDTÞdxdy¼∬ N½ �T dðDTÞ� 	
dy¼ −∬ N; x

� 	T dðDTÞ� 	
dy

þ
Z

N½ �TDTdy ð19Þ

∬ ½N�T ∂
∂y

ðDTÞdxdy¼∬ ½N�T dðDTÞ� 	
dx¼ −∬ ½N; x�T dðDTÞ� 	

dx

þ
Z

½N�TDTdx ð20Þ
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For free vibration, the boundary condition leads toZ
½N�TCεdy¼

Z
N½ �TCεdx¼

Z
N½ �TDTdy¼

Z
½N�TDTdx¼ 0 ð21Þ

It follows

∬ ½N�Tρ N½ � €ue
� �

dxdy

þ ∬ ½B�TC B½ � uef gdxdy−∬ ½N�TD N½ � Tef gdxdy¼ 0 ð22Þ

Reducing this equation to the matrix form results in the
following condensed expression:

M €ue
� �þ L uef g−G Tef g ¼ 0 ð23Þ
Table 2
Convergence study.

Node number (length) 81 201 Errorn

Quality factor 14,727.45 14,726.91 3.667�10−5

Frequency (Hz) 2,081,657 2,081,584 3.507�10−5

n The error is estimated by comparing the result of 81 nodes with that of 201
nodes along the solid beam length.

Fig. 3. (a) Schematic view of the beam resonator with a single vent. (b) Quality

Table 1
Silicon properties used in the analyses.

Young’s modulus, E(Pa) 1.57�1011

Poisson’s ratio, ν 0.22
Thermal expansion coefficient, α(K-1) 2.6�10−6

Thermal conductivity, k(W/mK) 90
Specific heat, Cp (J/KgK) 700
Density, ρ(kg/m3) 2330
Temperature, T0 (K) 300
where M is the mass matrix, L is the stiffness matrix and G is the
thermal stress induced by thermal deformation.

Likewise, the governing heat diffusion equation, Eq. (3), in the
differential form can be written as

k∇2T−ρcp
∂T
∂t

−C
∂εn

∂t
¼ k∇2T−ρcp _T−C _εn ¼ 0 ð24Þ

For the plane strain condition, the strain rate that contributes
to thermoelastic temperature only consists of two components εx
and εy, because the shear strain εxy does not generate any heat.

_εn ¼ ∂
∂t

ðεx þ εyÞ ð25Þ

The Galerkin finite element method is then applied to approx-
imate the displacement and temperature fields as

_εn ¼ N;x
� 	

_uex
� �þ N;y

� 	
_uey

� �¼ ½Bn� _ue
� � ð26Þ

Compared with [B] in Eq. (15), the shear strain term is not
included in the matrix [Bn].

The Galerkin residual equation is

∬ ½N�T ½k∇2T−ρcp _T−C_εn�dxdy¼ 0 ð27Þ

Integration of the first term in Eq. (27) by parts yields

∬ ½N�T ∂
∂x

ðkxT ;xÞdxdy¼∬ ½N�T dðkxT ;xÞ
� 	

dy¼ −∬ ½N; x�TkxT ;xdxdy

þ
Z

½N�TkxT ;xdy

ð28Þ

∬ ½N�T ∂
∂y

ðkyT ;yÞdxdy¼∬ ½N�T dðkyT ;yÞ
� 	

dx¼ −∬ ½N; y�TkyT ;ydxdy

þ
Z

½N�TkyT ;ydx

ð29Þ
factor and frequency of the vented beam as functions of the vent location.



Fig. 4. (a) Schematic view of the beam with two symmetrically distributed vents. (b) Quality factor and frequency of the vented beam as functions of the vent locations.

Fig. 5. Schematic view of a half beam resonator with two symmetrical vents located at (a) the clamped ends and (b) the beam center.
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Fig. 6. Effects of the length of the symmetrical vents located at (a) the clamped end
and (b) the beam center.
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For the insulated thermal boundary condition, i.e.Z
½N�TkxT ;xdy¼

Z
½N�TkyT ;ydx¼ 0 ð30Þ

It leads to

∬ ½B�Tk B½ � Tef gdxdyþ ∬ N½ �Tρcp N½ � _Te

n o
dxdy

þ ∬ N½ �TC Bn
� 	

_ue
� �

dxdy¼ 0 ð31Þ

Rewriting this equation in the matrix form yields

K Tef g þ H _Te

n o
þ F _ue

� �¼ 0 ð32Þ

where K is the thermal conductivity matrix, H is the heat genera-
tion matrix and F is the coupling matrix representing the heat
generation induced by beam deformation. Similar to Eq.(4), here
we assume a perturbation form of the solution

T ¼ T0eiωt ð33Þ

u¼ u0eiωt ð34Þ

_u¼ _u0eiωt ð35Þ
It immediately follows that

_u¼ ∂u
∂t

¼ ∂
∂t

ðu0eiωtÞ ¼ iωðu0eiωtÞ ¼ iωu ð36Þ

Substituting Eqs. (33)–(36) into Eqs. (23) and (32) results in

iωM _ue
� �þ L uef g−G Tef g ¼ 0 ð37Þ

K Tef g þ iωH Tef g þ iωF uef g ¼ 0 ð38Þ
The final matrix equation by combining Eqs. (36)–(38) is

−K 0 0
G −L 0
0 0 I

2
64

3
75

Te

ue

_ue

2
64

3
75¼ iω

H F 0
0 0 M

0 I 0

2
64

3
75

Te

ue

_ue

2
64

3
75 ð39Þ

where iω is the eigenvalue of the equation.
The quality factor can then be obtained from Eq. (6). Since the

energy dissipation of vibrating beams is mainly caused by thermo-
elastic heat generation and propagation, the quality factor can be
improved by reducing the conduction path. We hypothesize that
these goals can be achieved by adding vent sections to the
solid beam to disrupt the heat flow across the thickness. To
validate the hypothesis, the finite element method was applied
to investigate the geometric effects on the quality factor and the
resonant frequency with the presence of thermoelastic damping.
For the micro-beam resonator shown in Fig. 1 whose thickness is
greater than the width, the two-dimensional quadratic quadrilat-
eral nine-node (Q9) plain strain elements were implemented in
the model due to its higher precision than the four-node (Q4)
elements. MATLAB© was used as the programming tool in the
analysis.
3. Results and discussions

3.1. Finite element convergence tests

To validate the method, the convergence tests were performed
on a CC solid beam (without vents) of 200 μm long (Lb) and 10 μm
wide (Wb). The beam was discretized into rectangular elements of
the same size to ensure that the nodes were evenly distributed
along both length and width. The node number along the length
varied from 21 (i.e.10 elements) to 201 (i.e. 100 elements), while a
fixed number of 7 nodes (i.e. 3 elements) was used in the width.
The silicon material properties [28] are listed in Table 1. Poisson’s
ratio was set to zero for making a better comparison with the
analytical results [20] that leave out the shear effect. The result of
the convergence test is shown in Fig. 2. Compared to the analytical
solution where the quality factor is 14,646 and the frequency is
2.11 MHz, the numerical error in the quality factor obtained by the
finite element method is 0.55% by Q9 elements (14,747), mean-
while the error in the frequency is 1.42% by Q9 (2.08 MHz)
correspondingly, when the maximum mesh density is used in
the current analysis. It is also noticed that the convergent
frequency is slightly lower than the analytical solution, because
the latter is based on the Euler–Bernoulli beam model that is less
accurate than the theory of elasticity. Fig. 2 also clearly indicates
that the Q9 elements converge quickly to a fairly accurate solution
when the node number along the length is greater than 81 (i.e. 40
elements). To balance the effort of computation and the accuracy,
the results based on Q9 elements with two different mesh



Fig. 7. (a) (i) Three-vent beam resonator and (ii) its corresponding half model; (b) Quality factor and frequency of the vented beam as functions of the vent length.
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densities are compared in Table 2. The numerical accuracy shows
that a 7�81 mesh is sufficient for practical applications. When a
realistic nonzero Poison’s ratio is taken into consideration, the
quality factor and the frequency are 9400 and 2.13 MHz, respec-
tively, based on the 7�81 mesh.

3.2. The location of the vents

The same CC beams of 200 μm long and 10 μm wide are
considered. The vented beam is shown in Fig. 3a (in the x–y plane).
To determine the optimal location of the vents, a single vent whose
location varies along the beam with a fixed size, 3.33 μm wide and
10 μm long, has been studied. The vent location is defined by VL that
indicates the distance from the center of the vent to the left clamped
end of the CC beam. The results of the quality factor and the
frequency normalized against those of the solid beam are shown in
Fig. 3b. The symmetry in the curves is caused by the symmetry in the
vent locations with respect to the mid plane of the beam. The quality
factor increases by 16.9% and the frequency increases by only 0.9%
when the vents are located in the clamped region of the beam
(VL¼Lv/2). Another peak of the result appears when the vent is in the
center region of the beam (VL¼Lb/2). The quality factor is enhanced
by 8.3% while the frequency is 2.0% higher than the solid beam. As
shown in Fig. 1b, the maximum temperature difference is generated
in the clamped-end and the center of the solid beam. Therefore, a
disruption of the heat flow path in these locations can increase the
quality factor efficiently. By comparison, the vent located in the
clamped end can improve the quality factor more efficiently than the
center region.

Another set of analyses were performed on a beam with two
vents located symmetrically with respect to the mid plane of the
beam length, as shown in Fig. 4a. The size of a single vent remains
the same as the previous section, i.e. 3.33 μmwide and 10 μm long.
To improve the computational efficiency, the symmetry of the
vented beam is utilized, as demonstrated in Fig. 4a. The
results are shown in Fig. 4b. It has been found that the maximum
increase in the quality factor is as much as 40.6% when both vents
are located in the clamped ends of the CC beam, while the
frequency is lowered by only 1.9%, in comparison with the solid
beam. On the other hand, as the vents move to the center region
(VL¼95 mm) of the beam, the quality factor increases by 17.5%,
while the frequency increases by 4.1%. The much higher quality
factor for vents located in the clamped-ends compared to the
beam center implies that thermoelastic damping in solid beams is
predominantly contributed by the heat flow generated in the
clamped-ends.
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3.3. Geometric optimization of the vents - length

The vent size effects on the quality factor and the frequency are
investigated for two vent locations: the clamped ends and the
beam center, as illustrated in Fig. 5, since these locations lead to
the maximum quality factors. The analysis of the length effect was
performed by altering the beam length from 5 μm to 95 μmwith a
constant width of 3.33 μm. The result is shown in Fig. 6. As
expected, the quality factor increases with the vent length for
both locations. In more detail, the quality factor increases almost
linearly with the vent length when the vent in located in the
clamped end. Meanwhile, for the vent located at the center, the
increase in the quality factor is fairly slow at the beginning but
gains its speed when the vent length approaches the beam length.
The result of this comparison implies that the vents in the clamped
ends can improve the quality factor more effectively than the
vents in the beam middle. Fig. 6b shows that the frequency
decreases when the vents are moving closer to the clamped end,
since the presence of the vent section in the clamped end causes a
Fig. 8. (a) Quality factor and (b) Resonant frequency of the vented model as
functions of the vent width and length, for vents symmetrically located at the
clamped ends.
major loss of the structural stiffness. By implementing a vent of
maximum length 95 μm in present study, we have obtained a
maximum increase in the quality factor as high as 347.3% while the
frequency is lowered by 66.2% when the vents are located in the
clamped ends. By comparison, the quality factor is raised by
308.9% and its frequency is reduced by 63.8% for the centered
vents with the same length of 95 μm.

In addition to the vents located in the clamped ends or the
beam center, the effects of vents at other locations are also
investigated. Fig. 7a shows a beam with three vents, each
3.33 μmwide. The maximum full length of the vents is maintained
as 95 μm for consistency. The computational result is shown in
Fig. 7b. It can be seen that the peak quality factor occurs when the
vent at either location approaches its maximum length. In fact, the
maximum increase in the quality factor is 322.1% corresponding to
the longest vents located at the clamped ends. This result is higher
than the maximum increase in the quality factor of the longest
vents at the beam center, which is 263.9%. This demonstrates once
again that the vents located at the clamped ends can improve the
quality factor more efficiently than the vents located at the beam
center. On the other hand, the change in the resonant frequency is
opposite to that in the quality factor for the vented beam. Such a
trend indicates that the vents in the clamped ends can reduce the
structural rigidity of the system more significantly than other
locations.

3.4. Geometric optimization of the vents—width

Based on the previous study, it has been shown that the highest
quality factor can be achieved by symmetrically placing long vents
in the clamped ends. In this section we focus on the investigation
of the width effect as shown in Fig. 5a. The width of the vent is
altered from 1.2 μm to 9.2 μm with different lengths of 35 μm,
65 μm and 95 μm. The result in Fig. 8a indicates that vents of
greater size (longer and wider) exhibit higher quality factors. For
vents with constant length the quality factor increases sharply
with the width. We also observed that the maximum quality factor
of 65 μm-long vents are slightly lower than 95μm-long vents but
significantly higher than that of 35 μm-long vents. It turns out that
the highest achievable quality factor based on the present study is
3801 times that of the solid beamwhen the vent is 95 μm long and
9.2 μm wide. The change in the frequency is almost linear, as
shown in Fig. 8b, meanwhile it converges to a much lower value as
the width increases.

3.5. Geometric optimization of vented CF beam (cantilever)

By changing the boundary condition of the plane of symmetry in
Fig. 5 to a free end, the CC beam becomes a clamped-free beam (CF or
cantilever beam) with a half length. The contour plot of the
temperature field in its fundamental resonant mode is shown in
Fig. 9a. The greatest temperature variation takes place in the clamped
end. Therefore, the optimal location of the vent to disrupt the heat
flow is the clamped end. As a result a single vent in the clamped end
of the cantilever beam is studied here. Vents with different lengths
but a fixed width, 3.33 μm, in the CF beam is analyzed and the results
are presented in Fig. 9b. The quality factor increases quickly at the
beginning but slows down when the vent length approaches the
length of the entire beam. Such a trend is nearly opposite to the
change in the clamped–clamped beam with the centered vents as
shown in Fig. 6b. The quality factor increases by 586% and the
resonant frequency is reduced by 49.8% when the vent reaches its
maximum length of 95 μm in the present work. On the other hand,
investigations of the vent width in Fig. 9c and d shows similar trends
compared to the CC beam. For the vented cantilever, the maximum
quality factor achieved in this work is 2257 times that of the solid



Fig. 9. (a) Temperature contour plot of the dominant flexural vibration mode of the clamped-free (CF) MEMS resonator; (b) The results of the CF beam with a vent at the
clamped end as functions of the vent length; (c) The quality factor of the CF beam as a function of the vent width; (d) The resonant frequency of the CF beam as a function of
the vent width.
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cantilever when a vent section of 95 μm long and 9.2 μm wide
is used.
4. Conclusions

A customized finite element method is implemented on the
MATLAB platform to investigate the geometric effects of vents on
thermoelastic energy loss in clamped–clamped and clamped-free
beam resonators. The quality factor and resonant frequency are
obtained as functions of various geometric parameters including
the location, number and size of the vents. For vented clamped–
clamped beams, it has been found that the vents located in the
clamped end and in the center region can both increase the quality
factor very effectively compared to the other places, and the
optimal location is found to be the clamped end. Although the
quality factor can increase with the vent size, the effect of the vent
width is typically more significant than the vent length. In the
present study, the quality factor as high as 3801 times that of the
solid beam has been achieved. On the other hand, the result shows
that a vent located in the clamped end can reduce the structural
rigidity and hence significantly reduce the resonant frequency. We
also investigated the effect of vents in a cantilever beam and
similar conclusions have been obtained.
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