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Abstract—This paper, the first of two parts, presents the design
and modeling of VHF single-crystal silicon (SCS) capacitive
disk resonators operating in their elliptical bulk resonant mode.
The disk resonators are modeled as circular thin-plates with
free edge. A comprehensive derivation of the mode shapes and
resonant frequencies of the in-plane vibrations of the disk struc-
tures is described using the two-dimensional (2-D) elastic theory.
An equivalent mechanical model is extracted from the elliptic
bulk-mode shape to predict the dynamic behavior of the disk
resonators. Based on the mechanical model, the electromechanical
coupling and equivalent electrical circuit parameters of the disk
resonators are derived. Several considerations regarding the
operation, performance, and temperature coefficient of frequency
of these devices are further discussed. This model is verified in
part II of this paper, which describes the implementation and
characterization of the SCS capacitive disk resonators. [1223]

Index Terms—Capacitive resonator, disk resonator, electro-
mechanical coupling, elliptic bulk-mode, equivalent electrical
circuit, temperature coefficient of frequency.

I. INTRODUCTION

M ICROMECHANICAL resonators are of great interest
for a wide range of sensing [1], [2] and frequency

filtering applications [3], [4]. Studies of micromechanical
resonators have mostly targeted the flexural modes of beam and
beam-like structures because of their low stiffness and relative
ease of excitation and detection. However, it has been observed
that the attainable quality factors in beam resonators tend to
decrease as the beam size is decreased. As the dimensions are
scaled down to achieve higher resonant frequencies, surface
loss [5] and support loss [6] are likely to become the dominant
dissipation mechanisms in beam resonators due to their high
surface-to-volume and small length-to-width ratios.

With the increasing demand for micro- and nanomechanical
resonators with very high frequencies and very high-quality fac-
tors, disk resonators operating in their ultra-stiff bulk resonant
modes become a very attractive alternative to beam resonators.
Since the structural stiffness of the bulk modes are typically or-
ders of magnitude larger than that of the flexural modes, high
resonant frequencies (in the gigahertz) can be obtained without
the need to scale the resonator dimensions into the nanometer

Manuscript received December 10, 2003; revised February 9, 2004.
This work was supported by the DARPA NMASP program under Contract
DAAH01-01-1-R004. Subject Editor G. Stemme.

The authors are with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0250 USA (e-mail:
zhili.hao@ece.gatech.edu).

Digital Object Identifier 10.1109/JMEMS.2004.838387

domain. Therefore, bulk-mode resonators are easier to fabricate
and alleviate surface loss because of their smaller surface-to-
volume ratio compared to that of flexural beam resonators. Re-
cent work has demonstrated that the quality factor of silicon disk
resonators operating in their elliptic bulk-mode can be as high
as 40 000 at 148 MHz [7] and 98 000 at 73.6 MHz [8].

This paper focuses on the design and modeling of the ca-
pacitive disk resonators operating in their elliptic bulk-mode.
Using the two-dimensional (2-D) elastic theory, a comprehen-
sive derivation of the in-plane vibrations of the disk structure
is first described, providing mathematical expressions for the
mode shapes and resonant frequencies. Based on the elliptic
bulk-mode shape, the equivalent mechanical parameters of the
disk resonator are derived to predict its dynamic behavior. Fol-
lowing that, an equivalent circuit model for the capacitive disk
resonator is obtained, providing closed-form expressions for the
electromechanical coupling and motional resistance of the res-
onator. Several considerations regarding the operation, perfor-
mance, and temperature coefficient of frequency of these de-
vices are further discussed.

II. DESIGN AND OPERATION

Fig. 1 shows a schematic view of a capacitive disk resonator
of radius that is clamped to an anchor through a side-support
beam of width and length . The capacitive drive and sense
electrodes, concentric with the disk, span an equal angle of
and are separated from the disk by capacitive gaps denoted by

and for the drive and the sense electrodes, respectively.
The resonant structure, consisting of the disk and the support
beam, and the electrodes are of the same thickness . The device
is operated in a two-port drive and sense configuration, with a
dc polarization voltage applied to the resonant structure. In
order to excite the device into resonance, an ac drive voltage
signal is applied to the drive electrode, while the sense current
signal is detected from the sense electrode. The dc level of
both the drive and sense electrodes is at ground.

With origin set at the center of the disk, the plane polar coor-
dinates and is used in this work, as shown in Fig. 1. The disk
resonator vibrates in the in-plane elliptic bulk-mode illustrated
by the dotted line, which involves both radial and circumferen-
tial displacements in the disk. This elliptic bulk-mode has four
resonant nodes at the disk periphery, located 90 apart from one
another, where the radial displacements diminish. In order to
reduce the support loss in the disk, the support beam is located
at one of these four resonant nodes, 45 away from the center
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Fig. 1. Schematic view of a capacitive disk resonator with its sense and drive electrodes.

of the drive electrode. In order to excite the elliptic bulk-mode
with the maximum electromechanical coupling, the centers of
the two electrodes are aligned with the line , where the
radial displacements at the edge are maximum. The resonant
structure is made of low-resistivity silicon, while the two elec-
trodes are of highly conductive IC-compatible materials such as
metal or doped polysilicon [7].

III. IN-PLANE BULK RESONANT MODE OF A DISK

A. Theoretical Derivation

Although some work has been done on the investigation and
documentation of the modal characteristics of the in-plane vi-
brations of disk structures [9]–[12], the resonant frequencies and
mode shapes of the in-plane vibrations of a disk are not well
documented. This section provides a comprehensive derivation
of the in-plane vibrations of a disk to obtain mathematical ex-
pressions for the mode shapes and resonant frequencies. It is as-
sumed that the vibration variables are independent of the thick-
ness, and the support beam has negligible effect on the in-plane
vibrations of the disk. These assumptions are valid as long as
the resonator thickness is much smaller than its diameter and
the support beam size is much smaller than the disk size. Thus,
the disk is modeled as a circular thin-plate with free edge. For
simplicity, it is assumed that the disk resonator is made of an
isotropic and homogeneous material. The effect of anisotrop-
icity of single crystal silicon on the model will be discussed in
the following subsection.

The 2-D elastic theory governing the in-plane vibrations of
a disk, in the absence of body forces, may be written in the
following format [13]:

(1)

where , and denote the Young’s modulus, Poisson’s
ratio, and density of the resonator structural material, respec-
tively. The displacement vector may be defined in terms of the
pressure-wave (P-wave) scalar potential, , and the shear-wave
(S-wave) vector potential, , via Helmholtz’ theorem as [11]:

(2)

In our case, only the z-coordinate component of along the
thickness of the thin-plate (denoted by ) is nonzero, because
the vibration variables are independent of the z-coordinate.

By substituting (2) into (1) and taking the divergence and
curl of (1), respectively, the elastic equations for the P-wave and
S-wave may be written as

(3a)

(3b)

where in polar
coordinates; and
are the propagation velocities of the P-wave and S-wave,
respectively.

The solutions to (3) can be expressed as [11]:

(4a)

(4b)

where mode shapes are expressed in terms of the trigonometric
and Bessel functions of the first kind . It has been assumed
that , the mode order, is equal to or larger than 2. It is worth
noting that corresponds to mode shapes that are indepen-
dent of the circumferential direction, with displacements solely
either in the radial direction (radial) or in the circumferential
direction (torsional), while involves nonzero deforma-
tion at the center of the disk (translational) [12]. In this work,
we consider modes for which , as these modes provide
resonant nodes on the disk periphery. By locating the support
beam at the resonant node of the disk resonator, its support loss
is greatly reduced.

In (4), is the th angular resonant frequency. and
are the constants of the elastic waves, in the unit of squared

meter. and are both dimensionless frequency parameters,
respectively, expressed as

(5a)

(5b)
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(a) (b)

Fig. 2. The third mode shape calculated from the described theoretical derivation (triangles), Morio Onoe’s formula (squares), and simulated from ANSYS (solid
line), respectively. (a) Theoretical and numerical results. (b) Enlarged portion.

Substituting (4) into (2) leads to the radial and circumfer-
ential components of the displacement vector , respec-
tively, expressed as

(6a)

(6b)

For a disk with free edge, the boundary conditions at
are expressed, in terms of displacements, by the following

relations [11]:

(7a)

(7b)

where and denote the radial normal stress and circumfer-
ential shear stress, respectively. Substituting (6) into the above
boundary conditions gives rise to the following equation:

(8)

where the matrix is associated only with , and , while
can be expressed as , from (5).

In order to obtain nontrivial solutions for and , the de-
terminant of this matrix must be set to zero. It is the eigenvalue
(frequency parameter, ) causing the determinant to vanish

that corresponds to the resonant frequency of the in-plane vi-
brations of the disk. Therefore, the eigenvalue equation for the
resonant frequency can be expressed as (9), shown at the bottom
of the page.

From (8), the ratio between the constants of and is
calculated as:

(10)

The eigenvalue (9) and the ratio (10) are both solely func-
tions of the Poisson’s ratio of the resonator structural material.
It should be noted that (9) provides the same resonant frequency
as what obtained by Onoe [10]; however, the mode shape ob-
tained by Onoe [10] is different from (10). Fig. 2 illustrates the
third mode shapes calculated from the above theoretical deriva-
tion and Onoe’s formula, along with the simulated mode shape
for comparison. This figure illustrates that (10) is more accurate
in describing the mode shape than Onoe’s formula. It should be
noted that only when the vibration amplitude of the bulk-modes
is very large, noticeable is the difference in the predicted mode
shapes between the presented derivation and Onoe’s formula.

The resonant frequencies can be calculated from (5a) and are
expressed as

(11)

where and is determined by (9).

(9)
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Fig. 3. Mode shapes calculated from the theoretical derivation with triangles symbolizing the vibration modes. (a) m = 2, (b) m = 3, (c) m = 4, (d) m = 5.

TABLE I
THE RELATED ELLIPTIC BULK-MODE PARAMETERS FOR A DISK RESONATOR. THE SUBSCRIPT m = 2 IS OMITTED

By solving for eigenvalues in (9) using any available math-
ematical software, resonant frequencies and mode shapes can
be obtained. Several mode shapes are depicted in Fig. 3 to il-
lustrate the in-plane vibration behavior. It should be noted that,
for isotropic and homogeneous disk resonators, each vibration
mode is accompanied by its degenerate mode with the same
corresponding resonant frequency while 90 apart in the cir-
cumferential direction, in that the cosine and sine functions in

and are exchangeable.

As illustrated in Fig. 3, the elliptic bulk-mode corresponds
to the in-plane vibration mode of . The related elliptic
bulk-mode parameters calculated from this theoretical deriva-
tion are listed in Table I for several typical structural mate-
rials used in fabrication of micromechanical resonators, where
the material properties of single crystal silicon (SCS) along
both the and orientations are used [14]. Some of
the parameters listed in Table I will be described later in the
paper.
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Fig. 4. Elliptic bulk-mode from numerical simulation of a disk of diameter 29:4 �m and thickness 3 �m, supported at its center, with the anisotropic and
isotropic material properties of single crystal silicon. Legend shows the relative displacement distribution across the disk resonator and solid line denotes the
undeformed shape. (a) Anisotropic material properties, f = 148MHz elliptic bulk-mode in operation. (b) Isotropic material properties along the h110i orientation
f = 148MHz (E = 169 GPa, � = 0:064). (c) Anisotropic material properties, f = 121MHz degenerate elliptic bulk-mode. (d) Isotropic material properties
along the h100i orientation f = 119 MHz (E = 130 GPa, � = 0:279).

B. Numerical Simulation

To verify the theoretical derivation of the elliptic bulk-modes,
numerical simulation is performed using ANSYS on a disk res-
onator of diameter and thickness fabricated in
Part II of this paper. In order to investigate the effect of the sup-
port beam on the vibrations of the disk resonator, two types of
support for the SCS disk resonator are simulated: 1) supported
at its center (using a very small support post), and 2) side-sup-
ported at its edge by a support beam (width and length

).
Fig. 4 shows the simulated elliptic bulk-modes of the disk

of diameter supported at its center. Fig. 4(a) and (c)
shows the two degenerate elliptic bulk-modes simulated in SCS
(45 apart) for which the anisotropic material properties of SCS
were used. The difference in the resonant frequencies of these
two modes is introduced due to the anisotropy of the Young’s
modulus of SCS. On the other hand, Fig. 4(b) and (d) shows

the elliptic bulk modes in an isotropic material having identical
parameters corresponding to the and directions in
SCS, respectively. For the isotropic material properties, the dif-
ference in the resonant frequencies obtained through our theo-
retical derivation and numerical simulation is less than 0.1%.
The comparison of Fig. 4(a) to (b) and Fig. 4(c) to (d) indi-
cates that the resonant frequency of the SCS disk in the el-
liptic bulk-mode of interest can be calculated using the mate-
rial properties along the orientation, while the resonant
frequency of the degenerate mode can be calculated using the
material properties along the orientation. This may be
explained by that the displacement in these vibration modes
mainly happens along the and orientation, as illus-
trated in Fig. 4. Hence, the effect of the anisotropy of SCS on the
elliptic bulk-modes is negligible. For the elliptical bulk-mode
of interest, it is reasonable to treat the SCS disk resonator as
an isotropic material having the material properties of
SCS. The analytical treatment of the anisotropy of SCS to ob-
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Fig. 5. Elliptic bulk-mode shape (m = 2) from numerical simulation of
a side-supported disk of diameter 29:4 �m and thickness 3 �m, with the
anisotropic material properties of single crystal silicon used in the simulation.
The support beam (width 1:7 �m and length 2:7 �m) is oriented along
the h100i orientation. Legend shows the relative displacement distribution
across the disk resonator and solid line denotes the undeformed shape.
(a) Elliptic bulk-mode in operation f = 148 MHz. (b) Degenerate elliptic
mode f = 126 MHz.

tain closed-form expressions for resonant frequencies and mode
shapes is very difficult, if not impossible [15].

Fig. 5 shows the simulated elliptic bulk-mode shapes of a
side-supported SCS disk of diameter . The anisotropic
material properties of single crystal silicon are used in this sim-
ulation and the support beam is oriented along the orien-
tation (similar to the fabricated SCS disk of part II). Comparison
between Figs. 4 and 5 shows that the support beam has negli-
gible effect on both the frequency and mode shape of the elliptic
bulk-mode in operation (148 MHz). However, the effect of the
support beam on the degenerate elliptic bulk-mode is notice-
able. The slight increase in the frequency may be explained by
that the support beam is located at a position, where the max-
imum radial displacement for the degenerate bulk-mode occurs,
making the structure much stiffer.

Fig. 6. An infinitesimal element d� along the circumferential direction �.

IV. ELECTROMECHANICAL MODEL

A. Equivalent Mechanical Model

In general, an equivalent mechanical model can be used to
describe the dynamic behavior of the disk resonator operating
in its elliptic bulk-mode. The following describes the procedure
of extracting this equivalent model. In the rest of the paper, the
subscript “2” representing the second mode is omitted for sim-
plicity, since the disk operates in its elliptic bulk-mode in this
work. However, similar analysis can be applied to higher order
modes to derive their electromechanical model.

Since the excitation and detection of this disk resonator is
mainly through the gap variation along the radial direction, only
the vibration variables along the radial direction are considered
here. Through combining (6) and (10), the radial displacement
at the location can be rewritten as

(12)

where

(13)

denotes the dimensionless radial coordinate, normal-
ized to the disk radius R. As illustrated in Fig. 6, with an infin-
itesimal disk edge along the circumferential direction, , as the
reference point, the effective mass for an infinitesimal element,

, can be expressed as [16]:

(14)

where is the integral for the kinetic energy
and is the dimensionless
maximum radial displacement at the disk edge. As the functions
of solely the Poisson’s ratio of the material used, both and
are listed in Table I.

The dynamic behavior of this infinitesimal element along the
circumferential direction, , can be described by the second-
order equation of motion, shown in (15) at the bottom of the
next page, where is the damping-related coefficient for this
element and is the radial electrostatic force per unit ra-
dian from the drive and sense electrodes. Multiplying (15) by
the mode shape of [17], [18] and integrating both



HAO et al.: VHF SCS ELLIPTIC BULK-MODE CAPACITIVE DISK RESONATORS—PART I 1049

sides of this equation, from 0 to , gives rise to (16), shown at
the bottom of the page, where and are the radial vibra-
tion amplitude and damping coefficient of the disk resonator,
respectively. is the angular frequency of the elliptic
bulk-mode. Hence, the equivalent mass and equivalent stiffness
are, respectively, expressed as

(17)

(18)

where denotes the effective mass coefficient, as listed in
Table I.

Since the capacitive gap is extremely small compared with
the disk radius, the capacitances for the drive and sense elec-
trodes can be calculated using a parallel-plate model. Thus, the
electrostatic excitation force per unit radian from the drive and
sense electrodes, respectively, can be calculated as

(19)

(20)

where and are the capacitive gaps for the drive and the
sense electrodes, respectively, and denotes the permitivity of
air.

Substituting the above two equations into (16) gives rise to
the equivalent electrostatic stiffness and the equivalent force for
the elliptic bulk-mode, respectively, expressed as

(21)

(22)

Hence, the equivalent mechanical model for describing the
dynamic behavior of the disk resonator can be further expressed
as

(23)

Fig. 7. Y-parameter representation of the two-port electrical circuit model.

Taking into account the tuning effect of the polarization
voltage through combining (21) and (23), the resonant fre-
quency of this device can be calculated by (24) at the bottom
of the page.

It can be seen from (24) that the frequency-tuning capability
of the device strongly depends on the capacitive gaps and the
polarization voltage. Since fabrication tolerances are unavoid-
able, it is necessary to tune the frequencies of the disk res-
onators when deployed as arrays. As the disk scales down for
higher frequencies with the other design parameters fixed, its
frequency-tuning capability is decreased. In order to maintain
certain frequency-tuning capability, it is required that either the
capacitive gaps be decreased or the polarization voltage be in-
creased. It is worth noting that these two design parameters are
limited by linearity in the vibrations.

B. Equivalent Circuit Model

As shown in Fig. 7, the two-port electrical equivalent circuit
model for the disk resonator can be developed by the derivation
of its four -parameters (admittance parameters), which are de-
fined as the ratio of the current measured at one port to the drive
voltage at the same or the other port while the undriven port of
the circuit is shorted to ground expressed as [19]:

(25)

(15)

(16)

(24)
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where , and are the current and voltage measured
at the sense electrode (Port 2) and drive electrode (Port 1),
respectively.

For the micromechanical resonators, the admittance pa-
rameter can be further expressed in terms of the mechanical
force-displacement transfer function for the disk resonator,

, and the electromechanical coupling at the input
and output ports, , and . Here, the displacement
denotes the vibration amplitude . The input and output
coupling terms are expressed as

(26)

(27)

(28)

(29)

where and are the charge going through the sense and
drive electrode, respectively. While the electromechanical cou-
pling from the drive electrode to the sense electrode is denoted
by and , the coupling from the sense electrode to the drive
electrode is denoted by and .

Through combining the above equations, and can be
rewritten as [17]

(30)

(31)

From (23), the force-displacement transfer function of the
disk resonator can be expressed as

(32)

where is the quality factor of the disk resonator.
Substituting (22) into (26) and (29) gives rise to the following

expressions for the voltage-force transfer functions at the sense
and drive electrodes:

(33)

(34)

The displacement-current transfer functions at the sense and
drive electrodes can be written as:

(35)

(36)

Fig. 8. The equivalent circuit model for a capacitive disk resonator consisting
of a series RLC tank terminated with two transformers at the input and output
ports counting for asymmetry between the two electrodes.

Substituting (32) to (36) into (30) and (31) results in the
transfer functions in the form of admittance of series RLC tanks
with the equivalent inductance, capacitance, and resistance
expressed, respectively, as

(37)

(38)

(39)

where is commonly referred to as the motional resistance.
Following the same procedure, and can be derived,

expressed as

(40)

Finally, since the two transadmittance parameters ( and
) are equal and in the form of the admittance of a series RLC

tank, the equivalent circuit model includes a series RLC con-
necting the two ports. On the other hand, the input and output
admittances ( and ) have the same transfer functions as
the trans-admittance parameters scaled by the constant factors,

and . Adding transformers with the same trans-
formation ratios to the input and output ports of
the RLC tank, will scale the input and output impedances to the
required values without changing the transadmittance parame-
ters. Therefore, the equivalent circuit model shown in Fig. 8 has
all the admittance parameters derived for the resonators and can
be used for describing the dynamic behavior of the disk res-
onator. and are the static capacitances of the drive and
sense electrodes, respectively. It is worth mentioning that when
interconnect pads are added to the input and output of the res-
onator, the capacitances related to the pads should be included
in and .

It is worth mentioning that depending on the electrode config-
uration, the output current can be in phase or 180 out of phase
with respect to the input voltage. In case of in phase displace-
ment of the resonator toward sense and drive electrodes, i.e.,
confronting sense and drive electrodes, the current coming out
of the device has a 180 phase difference with the input voltage
while for the four-electrode configuration presented in part II of
this paper, the output current is in phase with the input voltage.
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Fig. 9. Characteristics of the motional resistance R and resonant frequency f versus the disk radius for a disk resonator. (a) Q = 10000; d = 100 nm,
V = 20V, h = R=10. (b) Q = 40000;d = 25 nm, V = 5 V, h = R=10.

Fig. 9 shows the characteristics of the motional resistance and
resonant frequency versus the disk radius. As the disk scales
down for higher frequencies from 30 to 300 MHz, the motional
resistance increases dramatically, from 50 K to 4.5 M for

, , , while from
1 K to 70 K for , ,

. In order to lower this resistance, it is required that the gap
be decreased while the quality factor and the polarization

voltage be increased.

V. DISCUSSION

A. Electrode Shaping

The shapes of the drive and sense electrodes are critical to
the operation of the disk resonator in the elliptic bulk-mode.
First, excitation of unwanted modes may be avoided by shaping
the driving electrode with respect to a particular vibration mode
[18]. As illustrated in Fig. 5, the elliptic bulk-mode in operation
is accompanied by its degenerate mode approximately 45 apart
in the circumferential direction. The shape of the drive elec-
trode, symmetric to the line , contributes to suppress this
degenerate mode. It is worth mentioning that the excitation of
this degenerate mode is also constrained by its low quality factor
(larger support loss caused by the normal stress of the support
beam) and different frequency value caused by the anisotropy
of SCS (as it was explained earlier). Second, the maximum fre-
quency-tuning capability is expected from this device in order
to achieve certain frequency accuracy. Therefore, the span angle

of the drive and sense electrodes should be maximized. Fi-
nally, both stronger electromechanical coupling and lower mo-
tional resistance are desirable from these resonators, requiring
the span angle to be maximized.

As shown in Fig. 10, when the circumferential direction is
away from , the radial displacement at the disk edge
decreases while the circumferential displacement increases.
Although the increase of the span angle from 0 to 90 will
improve the above-mentioned performance, this device may
suffer from spatial perturbation incurred by the circumferential

Fig. 10. The characteristics of the radial and circumferential displacement at
the disk edge versus the angle, �.

displacement. Therefore, the span angles of the electrodes are
chosen to be 45 in this work.

B. Support Beams

Although the support beam has negligible effect on the reso-
nant frequency of the disk in Section III, the effect of this beam
on support loss should be addressed. As illustrated in Fig. 11,
while the support beam is located at the resonant node with the
radial displacement diminishing, the circumferential displace-
ment at this node is nonnegligible, which can be expressed as

(41)

where is the
dimensionless circumferential displacement at resonant nodes,
as listed in Table I. It is this circumferential displacement that
causes the shear stress at the anchor, further inducing the energy
loss to the environment through exciting elastic waves [6]. This
theoretical explanation elucidates the experimental observation
that the disk resonators with more support beams have lower
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Fig. 11. Normalized radial and circumferential displacement in the elliptic
bulk-mode (m = 2; � = 0:064) calculated from (6). (a) Normalized radial
displacement. (b) Normalized circumferential displacement.

quality factors than those of the same sizes with one support
beam [7], [8].

C. Temperature Coefficient of Frequency

The resonant frequency of the capacitive disk resonator
varies with temperature due to: 1) temperature dependency
of the Young’s modulus of the resonator structural material;
2) thermal expansion of the material, causing a change in the
dimension of the resonator; and 3) variation in the capacitive

gap sizes, causing the variation in the electrostatic stiffness
and consequently the resonant frequency of the resonator with
temperature. As shown in the previous section, considering the
electrostatic stiffness, the resonant frequency for the elliptical
bulk-mode of the disk resonator can be written as (42), shown
at the bottom of the page.

By taking the derivative of the above expression with tem-
perature , the temperature coefficient of frequency for the disk
resonator can be expressed as

(43)

where and denote the temperature coefficient of the
Young’s modulus and the linear thermal expansion coefficient
of the resonator material. It is also assumed that the two capac-
itive gaps are the same. The last term in this equation shows the
effect of temperature-induced variation in the capacitive gaps on
the resonant frequency.

From the typical value of ppm/ C for the linear thermal
expansion coefficient of SCS [20], the contribution of this
factor to the frequency variation will be ppm/ C. Using
the thermal expansion coefficient values given in [21] for
polysilicon, the gap related frequency variation is in the range
of ppm/ C for a disk resonator of 29.4 in diameter
with 120 nm capacitive gaps and polarization voltage of 10 V.
Comparing with the thermal expansion, the capacitive gaps
have negligible effects on the frequency variation.

The measured temperature coefficient of the Young’s
modulus of SCS as reported so far is much larger than the
thermal expansion coefficient of SCS [22]–[24], ranging from

ppm/ [22] to ppm/ [23]. Hence, the frequency
drift due to temperature variations mainly results from the
temperature dependency of the Young’s modulus. It has been
found that doping has substantial effect on the temperature
coefficient of the Young’s modulus of SCS [24]. The disk
resonator in this work is made from highly p-type doped single
crystal silicon. Therefore, the temperature dependency of the
Young’s modulus of the silicon resonator can be extracted by
fitting the measured temperature coefficient of frequency to
(43), [25].

VI. CONCLUSION

Design and modeling of single crystal silicon capacitive disk
resonators operating in elliptic bulk-mode are presented. Using
the 2-D elastic theory, the elliptic bulk-mode shape and its fre-
quency are derived and verified by the corresponding numer-
ical simulation. Based on the elliptic bulk-mode shape, both the

(42)
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equivalent mechanical model and electrical circuit model for the
disk resonators are extracted to predict their dynamic behavior
and provide closed-form expressions for their electromechan-
ical coupling and motional resistance. The effect of electrode
shaping and support beams on the operation and performance
of these devices is further discussed. Temperature coefficient of
frequency for the disk resonators is also addressed. The experi-
mental verification of this modeling work is described in Part II.
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